Difference between revisions of "Moduli spaces of pseudoholomorphic polygons"
(→Pseudoholomorphic polygons for pairwise transverse Lagrangians) |
|||
Line 1: | Line 1: | ||
+ | [[table of contents]] | ||
+ | |||
To construct the moduli spaces from which the composition maps are defined we fix an auxiliary almost complex structure <math>J:TM\to TM</math> which is compatible with the symplectic structure in the sense that <math>\omega(\cdot, J \cdot)</math> defines a metric on <math>M</math>. (Unless otherwise specified, we will use this metric in all following constructions.) | To construct the moduli spaces from which the composition maps are defined we fix an auxiliary almost complex structure <math>J:TM\to TM</math> which is compatible with the symplectic structure in the sense that <math>\omega(\cdot, J \cdot)</math> defines a metric on <math>M</math>. (Unless otherwise specified, we will use this metric in all following constructions.) | ||
Then given Lagrangians <math>L_0,\ldots,L_d\subset M</math> and generators <math>x_0\in\text{Crit}(L_0,L_d), x_1\in\text{Crit}(L_0,L_1), \ldots, x_d\in\text{Crit}(L_{d-1},L_d)</math> of their morphism spaces, we need to specify the moduli space <math>\overline\mathcal{M}(x_0;x_1,\ldots,x_d)</math>. | Then given Lagrangians <math>L_0,\ldots,L_d\subset M</math> and generators <math>x_0\in\text{Crit}(L_0,L_d), x_1\in\text{Crit}(L_0,L_1), \ldots, x_d\in\text{Crit}(L_{d-1},L_d)</math> of their morphism spaces, we need to specify the moduli space <math>\overline\mathcal{M}(x_0;x_1,\ldots,x_d)</math>. |
Revision as of 07:00, 24 May 2017
To construct the moduli spaces from which the composition maps are defined we fix an auxiliary almost complex structure which is compatible with the symplectic structure in the sense that defines a metric on . (Unless otherwise specified, we will use this metric in all following constructions.) Then given Lagrangians and generators of their morphism spaces, we need to specify the moduli space . We will do this below by combining two special cases.
Pseudoholomorphic polygons for pairwise transverse Lagrangians
If each consecutive pair of Lagrangians is transverse, i.e. , then our construction is based on pseudoholomorphic polygons
where is a disk with boundary punctures in counter-clockwise order , and denotes the boundary component between (resp. between for i=d). More precisely, we construct the moduli spaces of pseudoholomorphic polygons for any tuple for as in [S]:
where
- is a tuple of pairwise disjoint marked points on the boundary of a disk, in counter-clockwise order.
- is a smooth map satisfying
- the Cauchy-Riemann equation ,
- Lagrangian boundary conditions ,
- the finite energy condition ,
- the limit conditions for .
Here two pseudoholomorphic polygons are equivalent if there is a disk automorphism that preserves the complex structure on , the marked points , and relates the pseudoholomorphic polygons by reparametrization, .
Pseudoholomorphic disk trees for a fixed Lagrangian
If the Lagrangians are all the same, , then our construction is based on pseudoholomorphic disks
For a sequence of such maps (modulo reparametrization by automorphisms of the disk), energy concentration at a boundary point is usually captured in terms of a disk bubble attached via a boundary node. This yields to a compactification of the moduli space of pseudoholomorphic disks modulo reparametrization that is given by adding boundary strata consisting of fiber products of moduli spaces of disks. One could - as in the approach by Fukaya et al - regularize such a space and then interpret disk bubbling as contribution to - where the composition is via a push-pull construction on some space of chains, currents, or differential forms on the Lagrangian. However, such push-pull constructions require transversality of the chains to the evaluation maps from the regularized moduli spaces, so that a rigorous construction of the -structure in this setting requires a complicated infinite iteration.
We will resolve this issue as in [JL] by following another earlier proposal by Fukaya-Oh to allow disks to flow apart along a Morse trajectory. Here we work throughout with the Morse function chosen in the setup of the morphism space . We also choose a metric on so that the gradient vector field satisfies the Morse-Smale conditions and an additional technical assumption in [1] which guarantees a natural smooth manifold-with-boundary-and-corners structure on the compactified Morse trajectory spaces for . This smooth structure is essentially induced by the requirement that the evaluation maps at positive and negative ends are smooth. With that data and the fixed almost complex structure we can construct the moduli spaces of pseudoholomorphic disk trees for any tuple as in JL:
where
- is an ordered tree with the following structure on the sets of vertices and edges :
- The edges are oriented towards the root vertex of the tree, i.e. for the outgoing vertex is still connected to the root after removing . Thus each vertex has a unique outgoing edge and a (possibly empty) set of incoming edges . Moreover, the set of incoming edges is ordered, with denoting the valence - number of attached edges - of ).
- The set of vertices is partitioned into the sets of main vertices and the set of critical vertices . The latter is ordered to start with the root , which is required to have a single edge , and then contains d leaves of the tree (i.e. with ), with order induced by the orientation and order of the edges (with the root being the minimal vertex).
- is a tuple of generalized Morse trajectories in the following compactified Morse trajectory spaces:
- for any edge between critical vertices;
- for any edge from a critical vertex to a main vertex ;
- for any edge from a main vertex to a critical vertex ;
- for any edge between main vertices .
- is a tuple of boundary marked points as follows:
- For each main vertex there are pairwise disjoint marked points on the boundary of a disk.
- The order of the edges corresponds to a counter-clockwise order of the marked points .
- The marked points can also be denoted as and by the edges for which or .
- For each main vertex there is a pseudoholomorphic disk, that is a smooth map satisfying
- the Cauchy-Riemann equation ,
- Lagrangian boundary conditions ,
- the finite energy condition .
- The pseudholomorphic disks can also be indexed as and by the edges for which or . In that notation, they satisfy the matching conditions with the generalized Morse trajectories whenever .
- The disk tree is stable in the sense that any main vertex whose disk has zero energy (which is equivalent to being constant) has valence .
Finally, two pseudoholomorphic disk trees are equivalent if there is a tree isomorphism and a tuple of disk automorphisms preserving the complex structure on such that
- T preserves the tree structure and order of edges;
- the Morse trajectories are the preserved for every ;
- the marked points are preserved for every ;
- the pseudoholomorphic disks are related by reparametrization, for every .
TODO: if J with no spheres, then compact and trivial isotropy [JL,Prop.2.5]
... otherwise add spheres as below and gnerally nontrivial isotropy
General moduli space of pseudoholomorphic polygons
Make up for differences in Hamiltonian symplectomorphisms applied to each Lagrangian by a domain-dependent Hamiltonian perturbation to the Cauchy-Riemann equation
Finally, the symplectic area function in each case is given by TODO
Fredholm index