Difference between revisions of "Links to Videos, Papers, and Ongoing Work on Polyfold Theory"

From Polyfolds.org
Jump to: navigation, search
(Papers on Polyfold Applications)
(Papers on Polyfold Applications)
Line 35: Line 35:
 
* Sc-Smoothness, Retractions and New Models for Smooth Spaces (H.Hofer, K.Wysocki, E.Zehnder, 2010) [https://arxiv.org/abs/1002.3381]
 
* Sc-Smoothness, Retractions and New Models for Smooth Spaces (H.Hofer, K.Wysocki, E.Zehnder, 2010) [https://arxiv.org/abs/1002.3381]
  
== Papers on Polyfold Applications ==
+
== Papers on applications of Polyfold Theory ==
  
 
* Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory (H.Hofer, K.Wysocki, E.Zehnder, 2011) [https://arxiv.org/abs/1107.2097]
 
* Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory (H.Hofer, K.Wysocki, E.Zehnder, 2011) [https://arxiv.org/abs/1107.2097]

Revision as of 18:34, 19 May 2017

Videos of talks on polyfolds

  • 2015 Summer School on Moduli Problems in Symplectic Geometry playlist [1], in particular series by J.Fish, K.Wehrheim [2], [3], [4], [5], [6]; discussions with N.Bottman [7], [8]; H.Hofer on construction of SFT polyfolds [9], [10], [11], [12], [13]
  • Introduction to Polyfolds (K.Wehrheim, 2012 at IAS) [14]
  • An M-polyfold relevant to Morse theory (P.Albers, 2012 at IAS) [23]
  • Transversality questions and polyfold structures for holomorphic disks (K.Wehrheim, 2009 at MSRI) [24]

Surveys and Textbooks on Polyfold Theory

  • A Polyfold Cheat Sheet (K.Wehrheim, 2016) [25]
  • Polyfold and Fredholm Theory I: Basic Theory in M-Polyfolds (H.Hofer, K.Wysocki, E.Zehnder, 2014) [26]
  • Polyfolds And A General Fredholm Theory (H.Hofer, 2008&2014) [27]
  • Polyfolds: A First and Second Look (O.Fabert, J.Fish, R.Golovko, K.Wehrheim, 2012) [28]
  • A General Fredholm Theory and Applications (H.Hofer, 2005) [29]

Papers on abstract Polyfold Theory

  • A General Fredholm Theory I: A Splicing-Based Differential Geometry (H.Hofer, K.Wysocki, E.Zehnder, 2006) [30]
  • A General Fredholm Theory III: Fredholm Functors and Polyfolds (H.Hofer, K.Wysocki, E.Zehnder, 2008) [32]
  • Integration Theory for Zero Sets of Polyfold Fredholm Sections (H.Hofer, K.Wysocki, E.Zehnder, 2007) [33]
  • Sc-Smoothness, Retractions and New Models for Smooth Spaces (H.Hofer, K.Wysocki, E.Zehnder, 2010) [34]

Papers on applications of Polyfold Theory

  • Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory (H.Hofer, K.Wysocki, E.Zehnder, 2011) [35]
  • Fredholm notions in scale calculus and Hamiltonian Floer theory (K.Wehrheim, 2012&2016) [36]
  • A-infty structures from Morse trees with pseudoholomorphic disks (Jiayong Li, K.Wehrheim, 2014 preliminary draft) [37]