Difference between revisions of "Links to Videos, Papers, and Ongoing Work on Polyfold Theory"
From Polyfolds.org
(→Surveys and Textbooks on Polyfold Theory) |
(→Papers on abstract Polyfold Theory) |
||
Line 23: | Line 23: | ||
* A General Fredholm Theory and Applications (H.Hofer, 2005) [https://arxiv.org/abs/math/0509366] | * A General Fredholm Theory and Applications (H.Hofer, 2005) [https://arxiv.org/abs/math/0509366] | ||
− | == | + | == Abstract Polyfold Theory == |
* A General Fredholm Theory I: A Splicing-Based Differential Geometry (H.Hofer, K.Wysocki, E.Zehnder, 2006) [https://arxiv.org/abs/math/0612604] | * A General Fredholm Theory I: A Splicing-Based Differential Geometry (H.Hofer, K.Wysocki, E.Zehnder, 2006) [https://arxiv.org/abs/math/0612604] |
Revision as of 18:35, 19 May 2017
Contents
Videos of talks on polyfolds
- 2015 Summer School on Moduli Problems in Symplectic Geometry playlist [1], in particular series by J.Fish, K.Wehrheim [2], [3], [4], [5], [6]; discussions with N.Bottman [7], [8]; H.Hofer on construction of SFT polyfolds [9], [10], [11], [12], [13]
- Introduction to Polyfolds (K.Wehrheim, 2012 at IAS) [14]
- An M-polyfold relevant to Morse theory (P.Albers, 2012 at IAS) [23]
- Transversality questions and polyfold structures for holomorphic disks (K.Wehrheim, 2009 at MSRI) [24]
Surveys and Textbooks
- A Polyfold Cheat Sheet (K.Wehrheim, 2016) [25]
- Polyfold and Fredholm Theory I: Basic Theory in M-Polyfolds (H.Hofer, K.Wysocki, E.Zehnder, 2014) [26]
- Polyfolds And A General Fredholm Theory (H.Hofer, 2008&2014) [27]
- Polyfolds: A First and Second Look (O.Fabert, J.Fish, R.Golovko, K.Wehrheim, 2012) [28]
- A General Fredholm Theory and Applications (H.Hofer, 2005) [29]
Abstract Polyfold Theory
- A General Fredholm Theory I: A Splicing-Based Differential Geometry (H.Hofer, K.Wysocki, E.Zehnder, 2006) [30]
- A General Fredholm Theory II: https://arxiv.org/abs/0705.1310 (H.Hofer, K.Wysocki, E.Zehnder, 2007) [31]
- A General Fredholm Theory III: Fredholm Functors and Polyfolds (H.Hofer, K.Wysocki, E.Zehnder, 2008) [32]
- Integration Theory for Zero Sets of Polyfold Fredholm Sections (H.Hofer, K.Wysocki, E.Zehnder, 2007) [33]
- Sc-Smoothness, Retractions and New Models for Smooth Spaces (H.Hofer, K.Wysocki, E.Zehnder, 2010) [34]
Papers on applications of Polyfold Theory
- Applications of Polyfold Theory I: The Polyfolds of Gromov-Witten Theory (H.Hofer, K.Wysocki, E.Zehnder, 2011) [35]
- Fredholm notions in scale calculus and Hamiltonian Floer theory (K.Wehrheim, 2012&2016) [36]
- A-infty structures from Morse trees with pseudoholomorphic disks (Jiayong Li, K.Wehrheim, 2014 preliminary draft) [37]