Difference between revisions of "Table of contents"

From Polyfolds.org
Jump to: navigation, search
m
m
Line 28: Line 28:
 
* the polyfold [[ambient bundle]] <math>\pi: \mathcal{Y}_J(\underline{x}) </math> as continuous surjection between topological spaces (K-TODO)
 
* the polyfold [[ambient bundle]] <math>\pi: \mathcal{Y}_J(\underline{x}) </math> as continuous surjection between topological spaces (K-TODO)
 
* the [[Cauchy-Riemann section]] as continuous map <math>\overline\partial_{J,Y}:\mathcal{X}(\underline{x})\to \mathcal{Y}_J(\underline{x})</math> (K-TODO)
 
* the [[Cauchy-Riemann section]] as continuous map <math>\overline\partial_{J,Y}:\mathcal{X}(\underline{x})\to \mathcal{Y}_J(\underline{x})</math> (K-TODO)
 
+
** [[gluing construction]] for Hamiltonian perturbations (TODO)
  
 
'''Analysis details:'''
 
'''Analysis details:'''
  
* [[gluing construction]] for Hamiltonian perturbations (TODO)
 
 
* proof that  [[Gromov compactness implies properness]] (TODO)
 
* proof that  [[Gromov compactness implies properness]] (TODO)
 
* the [[polyfold smooth structure]] on the  [[ambient space]]  <math>\mathcal{X} (\underline{x}) </math> (J-TODO)
 
* the [[polyfold smooth structure]] on the  [[ambient space]]  <math>\mathcal{X} (\underline{x}) </math> (J-TODO)
 
* the [[polyfold bundle structure]] of the [[ambient bundle]] <math>\pi: \mathcal{Y}_J(\underline{x}) </math> (J-TODO)
 
* the [[polyfold bundle structure]] of the [[ambient bundle]] <math>\pi: \mathcal{Y}_J(\underline{x}) </math> (J-TODO)
 
* the [[polyfold Fredholm property]] of the [[Cauchy-Riemann section]] <math>\overline\partial_{J,Y}:\mathcal{X}(\underline{x})\to \mathcal{Y}_J(\underline{x})</math> (J-TODO)
 
* the [[polyfold Fredholm property]] of the [[Cauchy-Riemann section]] <math>\overline\partial_{J,Y}:\mathcal{X}(\underline{x})\to \mathcal{Y}_J(\underline{x})</math> (J-TODO)

Revision as of 15:48, 6 June 2017

Table of contents for Polyfold Constructions for Fukaya Categories


Construction overviews:


Algebra details:


Geometry/Topology/Combinatorics details:

Analysis details: